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The Computation of Coaxial Line
Step Capacitances

P. I. SOMLO

Abstract—Accurate values of coaxial line step capacitances have been
computed by the method of ‘mode matching’ at the plane of the discon-
tinuity in a coaxial line, as described by Whinnery, Jamieson, and Rob-
bins in 1944. The capacitances are given in tables, graphs, and as empir-
ical explicit expressions, suitable for programming in digital computers.

INTRODUCTION

TEP CAPACITANCE, or discontinuity capacitance, is
S the name given to the capacitance which occurs in

transmission lines at the plane of a sudden change of
geometry (discontinuity), and causes reflections, apart from
reflections caused by any sudden change of the character-
istic impedance of the line. As an example, if the dimensions
of a coaxial line from a given transverse plane onwards are
suddenly scaled up, thus keeping constant the character-
istic impedance of the transmission line, this line will no
longer be reflectionless because of the disturbance of the
field pattern in the vicinity of the discontinuity.

Whinnery and Jamieson [1] have described the detailed
physical picture of the phenomena taking place at the ‘step,’
and have justified the concept of an equivalent shunt capac-
itance located that the plane of the discontinuity. In a
subsequent article by the same authors [2], mathematical
methods were presented for the evaluation of this capacitance
from the dimensions, the frequency and the properties of
the dielectric present in a coaxial line. The results were given
in the form of charts (Figs. 8 and 9 in reference [2]) which
up to the present time have been the only theoretical source
of numerical information on the subject, apart from electro-
static methods, which, of course, do not take into account
the effect of frequency.

In an earlier communication [3] an explicit formula was
presented which enabled values of step capacitances from
Whinnery, Jamieson, and Robbins’s charts [2] to be used
in digital computer programs.

Later it was shown ]4], [5] that this formula had repro-
duced inaccuracies inherent in the original charts. Subse-
quent investigation has shown that the charts are up to 5
percent in error.

Precision measurements have now progressed to a stage
where more accurate charts are needed. As an illustrative
example, the value of shunt capacitance in a 50 ohm coaxial
line operated at 1 GHz, that would cause a VSWR of 1.001,
is of the order of 3 fF (3X10~'% F). This means that if the
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measurement is capable of resolving a VSWR of 1.001, any
step capacitances should be known to an accuracy of ap-
proximately +0.1 fF to ensure that errors introduced by
inaccurate values of step capacitances do not limit the
interpretation of the measurement.

Such a requirement, and the realization that methods like
relaxation, or the Monte Carlo method would be too lengthy,
even on a high speed computer, to produce an answer of five
accurate digits, which even then would apply only at zero
frequency, led to the programming of the method described
by Whinnery, Jamieson and, Robbins [2] for a high speed
digital computer.

In the next section the computed results are presented in
three ways: in graphical form; tabulated ; and in a form suit-
able for inclusion in digital computer programs. A

THE CoMPUTED VALUES OF STEP CAPACITANCE
Graphical Form

For the benefit of users wishing to obtain values of step
capacitance quickly, where an accuracy of about one per-
cent is sufficient, the results have been plotted (Figs. 1 and 2).
Because, at small values of «,! the step capacitance in a plane
line varies quasi-logarithmically. a semi-logarithmic chart
was used. (Using the identity cosh—x=In (x++/x2—1) in
the explicit expression for the step capacitance in a plane line
[1] we obtain

Cd=—e—[a2+lln1+a 4o
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Jem
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which reveals that

2e
Cq = — [1 - ln4a],
T
for small values of «.)

The computed values of step capacitance at zero fre-
quency given in Table I are believed to be accurate to about
five digits. They were obtained by taking into account the
first 40 higher modes of propagation, and extrapolating
hyperbolically the returned values of step capacitances as a
function of numbers of modes used to produce them, and
regarding the asymptotic value of this hyperbola as the final
answer. (For further details of this extrapolation see the
discussion on accuracy.)

! For the definition of «, see Figs. 1 and 2.
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Inclusion in Computer Programs

In addition to the full-scale computer program described
in this paper, there are several other methods, faster but of
limited accuracy, whereby step capacitance values may be
obtained using a digital computer.

One approach would be to store the numerical values
given in Table I in the machine, and interpolate between
points in the required region. As an alternative, one may
produce approximate (but sufficiently accurate) explicit ex-
pressions which, within set limits of the arguments, will
return the values of step capacitance. One such possibility
was suggested by the author [3]. Another possibility
is to take advantage of the fact that the effect of curvature
on the step capacitance is small, therefore all values of step
capacitances for 71 may be regarded as a perturbation on
the values for r=1 (the plane case). The result of this ap-
proach is given in the following expressions.
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14+«
n —

o l—«

Ca

2In

211
e[a+1

= 1.11
100~ il +

— ol

X 10735(1 — a){(r — )F/cm.
This formula produces a maximum error of 0.3 fF/cm for

the ranges 0.01 <« < 1.0 and 1.0<+<6.0.
Step on outer
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The maximum error produced by this formula is +0.6
fF/cm for the ranges 0.01<a<0.7 and 1.5<7<6.0.
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Coaxial line step capacitance, for the case of step on the inner conductor, in fF/cm. When multiplied by the
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circumference of the outer conductor, the step capacitance is obtained in femtofarads; and R, the position of the effec-
tive open circuit, measured from the end face of the inner conductor, in units of the annulus r;—r, for the case 7= .
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Fig. 2. Coaxial line step capacitance, for the case of step on the outer conductor, in fF/cm, When multiplied
by the circumference of the inner conductor, the step capacitance is obtained in femtofarads.
TABLE 1
CoMPUTED VALUES OF STEP CAPACITANCE IN fF/cm
When multiplied by the circumference of the unstepped conductor, these figures yield the value of step capacitance in femtofarads
Plane Case Step on Inner Open Circuit Step on Outer
(14
r=1 1.5 3 5 10 © 1.5 3 5 10
0.1 108.20 108.56 110.31 112.05 114.56 134.89 108.66 112.42 118.82 135.07
0.2 69.700 70.024 71.663 73.320 75.736 95.659 70.111 73.398 78.814 92.659
0.3 47.797 48.083 49.562 51.089 53.349 72.607 48.149 50.885 55.265 65.767
0.4 32.931 33.171 34.452 35.808 37.859 56.171 33.218 35.388 38.774 46.741
0.5 22.121 22.311 23.363 24.514 26.302 43.358 22.341 23.965 26.445 32.194
0.6 14.057 14.196 14.999 15.913 17.387 32.832 14.213 15.338 17.025 20.887
0.7 8.0688 8.1592 8.7063 9.3604 10.469 23.869 8.1665 8.8597 9.8814 12.199
0.8 3.7965 3.8436 4.1462 4.5311 5.2314 16.009 3.8455 4.1909 4.6926 5.8217
0.9 1.0784 1.0926 1.1927 1.3303 1.6095 8.8579 1.0927 1.1952 1.3423 1.6712
1.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.0 0.0 0.0
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Accuracy oF ResuLTs

There are three possible sources of error in the calculation
of the step capacitance. These are:

1) the limited number of digits representing a floating
point quantity in the computer;

2) the threshold values set in the program to terminate
iterative processes, etc.;

3) the extrapolation used in obtaining the final values of
step capacitances, i.c. using only a finite number of
higher order modes to predict the asymptotic values of
the step capacitances corresponding to an infinite num-
ber of modes, as required by the theory.

The computer employed had a word length of 48 bits,
resulting approximately in 12 decimal digits. The effect on
accuracy of a finite number of digits is most serious when dif-
ferences of similar quantities are taken, in which case sev-
eral significant digits are lost, despite the fact that the com-
puter still produces an answer containing 12 decimal digits.
In critical places in the program where this was likely to
happen double precision was used, and it is believed that
errors from this source do not contribute to the first five
digits of the results.

For the set threshold values of iterative processes the
check is more positive. It is always possible to change the
value of the threshold and observe the effect of this change
on the final answer. The value of the threshold should be
such that further reduction does not affect the result sig-
nificantly.

As mentioned before, the theory [2] requires an infinite
number of higher order modes of propagation to be taken
into account. This is not possible. In the original calcula-
tion by Whinnery, Jamieson, and Robbins, made before
automatic digital computers became available, only the first
four modes were taken into account. In the present calcula-
tion provision was made to use the first 140 modes, but it
was found that the required accuracy could be achieved by
using only 40 modes and extrapolating in the following way
to obtain an answer closely approaching that correspond-
ing to an infinite number of modes.

In analyzing one point (a=0.5, 7=3.0), results were
computed using the first 28, 29, - - - 40 modes. It was found
that the computed step capacitances considered as a func-
tion of the numbers of modes used could be approximated
very well by an hyperbola of the form C=A4/m-+ B, where
A and B are constants. The coefficient of correlation between
m and C for the above-mentioned case was found to be
0.999 992. Thus it is believed that the asymptotic value B
of the first order hyperbola fitted by the method of least
squares may be regarded as the solution within the limits of
accuracy given above.

As a further check, using the above procedure, for a
typical value of «=0.5, a set of capacitances was calculated
for r=1.5, 1.4, 1.3, 1.2, and 1.1. Extrapolating this set to
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7= 1.0, which is that of the plane case for which an explicit
formula exists (given above), the residual error was found
to be in the order of 0.01 percent.

Any further increase in computational accuracy is hardly
warranted in most practical applications because of the
limited accuracy of the knowledge of the physical dimensions
the departure of the actual geometry from the theoretical
(perfectly smooth concentric circular cylinders having per-
fectly sharp corners), and conductor losses.

THE EFFECT OF FREQUENCY

As has been pointed out [1], [2], it is not possible to
present universally valid frequency correction factors K2
which when multiplied by the step capacitance values for
zero frequency, yield the step capacitances at the desired
frequencies because each different case has a different fre-
quency correction factor. K is a function of «, 7, and the
frequency, and also depends upon whether the step is on the
inner or the outer conductor.

However, to indicate generally the form and magnitude
of the frequency correction factor, K is given in Fig. 3.

For users wishing to obtain values of step capacitances
accurate to five digits at non-zero frequencies, the only
possible way seems to be to run the complete program on a
computer for the case in question. To those who are inter-
ested, the author would be pleased to send a copy of the
computer program listing written in CDC 3600 FORTRAN.

THE METHOD OF PROGRAMMING

The computations of ‘step on inner’ and ‘step on outer’
are very similar, therefore only the case of the ‘step on
inner’ is described. The equation numbers, unless stated
otherwise, refer to reference [2].

The program starts with the evaluation of quantities
derived from Bessel functions. For arguments <50 the
‘backward recurrence’ method is used to evaluate the Bessel
functions [6] and the roots of the transcendental equations
(7) and (8) are found by iteration. For arguments<50
McMahon’s method [7] is used to yield the roots. From the
desired number of roots, the quantities X4m, kzn, Gam, and
Gg. of (5) and (6) and finally the values of Z of (3) are
obtained. The given frequency determines Ky,, and Kp, of
(16).

The above quantities, and the Hahn functions (80), (81),
and (82) of reference [1], yield the quantities L,, L,, M, of
(33), (34), and (35), and thus the elements of the matrix
equation (37) may be formulated. The solutions of the ma-
trix equation are used in (36) to work out the step capaci-
tance corresponding to the given number of higher order

2 In this paper the symbol for the frequency correction factor was
chosen to be K in contrast with reference [2] where F was used, to avoid
confusion now that F has become the accepted symbol for Farads.
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Fig. 3. Frequency correction factor for coaxial line step capacitance vs. (rs—ry)/A.
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modes. Next, the number of modes is increased by one, and
a different value of capacitance is obtained. Then the num-
ber of modes is increased again by one, and this is repeated
until the highest desired number of evanescent modes have
been used. Finally, a first order hyperbola is fitted by the
method of least squares, to the capacitances as functions of
number of modes used. The asymptotic value of this hyper-
bola is regarded as the final value of capacitance. It has been
found that using the first 28, 29, ..., 40 modes yields a
sufficiently accurate asymptotic value for the ‘best fit’ hyper-
bola.

It should be noted that a few misprints were located in
reference [2] which had to be corrected before the method
could be used. In (37) and (45) the subscripts m and p should
be reversed to comply with the accepted order of subscripts
of matrix elements, where the first subscript stands for row
number and the second for column number. In (44), in the
denominator of the second term the quantity in brackets
should not be squared and the subscript of » should be 1
instead of 3. In the same equation and in (45) the arguments
of the L and M functions should not be (b—a)/b as indi-
cated, but only a/b, once the appropriate definitions of @ and
b have been set down for the condition ‘step on outer’—as
given in the text. Similarly, in the numerator of the first
term of (44), the quantity indicated as (b—a)? should simply
be a®. Finally, in the numerator of the last summation of
(32), (ks.\/2)? should read (kznrs)s.
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CONCLUSIONS

A long-standing need to obtain more accurate values of
coaxial line step capacitances has been satisfied, using the
approach suggested by Hahn in 1941, and applied in detail
by Whinnery, Jamieson, and Robbins in 1944, by program-
ming the above-mentioned method for a high speed digital
computer.
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