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The Computation of Coaxial Line

Step Capacitances

P. I. SOMLO

Abstract—Accurate values of coaxial line step capacitances have been

computed by the method of ‘mode nmtchhg’ at the plane of the discon-

tinuity in a coaxial line, as described by Whinnery, Jamieson, and Rob-

bins in 1944. The capacitances are given in tables, graphs, and as empir-

ical explicit expressions, suitable for programming in digital computers.

INTRODUCTION

s

TEP CAPACITANCE, or discontinuity capacitance, is

the name given to the capacitance which occurs in

transmission lines at the plane of a sudden change of

geometry (discontinuity), and causes reflections, apart from

reflections caused by any sudden change of the character-

istic impedance of the line. As an example, if the dimensions

of a coaxial line from a given transverse plane onwards are

suddenly scaled up, thus keeping constant the character-

istic impedance of the transmission line, this line will no

longer be reflectionless because of the disturbance of the

field pattern in the vicinity of the discontinuity.

Whinnery and Jamieson [1] have described the detailed

physical picture of the phenomena taking place at the ‘step,’

and have justified the concept of an equivalent shunt capac-

itance located that the plane of the discontinuity. In a

subsequent article by the same authors [2], mathematical

methods were presented for the evaluation of this capacitance

from the dimensions, the frequency and the properties of

the dielectric present in a coaxial line. The results were given

in the form of charts (Figs. 8 and 9 in reference [2]) which

up to the present time have been the only theoretical source

of numerical information on the subject, apart from electro-

static methods, which, of course, do not take into account

the effeet of frequency.

In an earlier communication [3] an explicit formula was

presented which enabled values of step capacitances from

Whinnery, Jamieson, and Robbins’s charts [2] to be used

in digital computer programs.

Later it was shown ]4], [5] that this formula had repro-

duced inaccuracies inherent in the original charts. Subse-
quent investigation has shown that the charts are up to 5

percent in error.

Precision measurements have now progressed to a stage

where more accurate charts are needed. As an illustrative
example, the value of shunt capacitance in a 50 ohm coaxial

line operated at 1 GHz, that would cause a VSWR of 1.001,

is of the order of 3 fF (3X 10–15 F). This means that if the
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measurement is capable of resolving a VSWR of 1.001, any

step capacitances should be known to an accuracy of ap-

proximately ~ 0.1 fF to ensure that errors introduced by

inaccurate values of step capacitances do not limit the

interpretation of the measurement.

Such a requirement, and the realization that methods like

relaxation, or the Monte Carlo method would be too lengthy,

even on a high speed computer, to produce an answer of five

accurate digits, which even then would apply only at zero

frequency, led to the programming of the method described

by Whinnery, Jamieson and, Robbins [2] for a high speed

digital computer.

In the next section the computed results are presented in

three ways: in graphical form; tabulated; and in a form suit-

able for inclusion in digital computer programs. \

THE COMPUTED VALUES OF STEP CAPACITANCE

Graphical Form

For the benefit of users wishing to obtain values of step

capacitance quickly, where an accuracy of about one per-

cent is sufficient, the results have been plotted (Figs. 1 and 2).

Because, at small values of a,l the step capacitance in a plane

line varies quasi-logarithmically. a semi-logarithmic chart

was used. (Using the identity cosh–lx = In (x+ <X2 — 1) in

the explicit expression for the step capacitance in a plane line

[1] we obtain

[

az+l l+acd=: 4a
—ln — –21n —

l–a 1F/m
n- cx l–d

which reveals that

cd = 3 [1 – ln4~],
n-

for small values of a.)

The computed values of step capacitance at zero fre-

quency given in Table I are believed to be accurate to about
five digits. They were obtained by taking into account the
first 40 higher modes of propagation, and extrapolating

hyperbolically the returned values of step capacitances as a

function of numbers of modes used to produce them, and

regarding the asymptotic value of this hyperbola as the final

answer. (For further details of this extrapolation see the

discussion on accuracy.)

1 For the definition of a, see Figs. 1 and 2.
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Inclusion in Computer Programs

In addition to the full-scale computer program described

in this paper, there are several other methods, faster but of

limited accuracy, whereby step capacitance values maybe

obtained using a digital computer.

One approach would be to store the numerical values

given in Table I in the machine, and interpolate between

points in the required region. As an alternative, one may

produce approximate (but sufficiently accurate) explicit ex-

pressions which, within set limits of the arguments, will

return the values of step capacitance. One such possibility

was suggested by the author [3]. Another possibility

is to take advantage of the fact that the effect of curvature

on the step capacitance is small, therefore all values of step

capacitances for ~# 1 may be regarded as a perturbation on

the values for ~= 1 (the plane case). The result of this ap-

proach is given in the following expressions.

(cd ‘F
2f7r3

Step on inner

[

c12+l l+a
cd=~ —--—ln–– 21n —

a l–a! , :J +‘“1
X 10-15(1 – CZ)(, – l) F/cm.

This formula produces a maximum error of L 0.3 fF/cm for

the ranges 0.01 <a< 1.0 and 1.0s756.0.

Step on outer

cd =

x

E

–[

az+l l+a
—h-— 2 in

loo7r a l–a 1& +4.12

10-15(0.8 – a) (T – 1.4) F/cm.

The maximum error produced by this formula is Y 0.6

fF/cm for the ranges 0.015 a50.7 and 1.5 ST S6.O.
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Fig. 1. Coaxial line step capacitance, for the case of step on the inner conductor, in fF/cm. When multiplied by the
circumference of the outer conductor, the step capacitance is obtained in femtofarads; and R, the position of the effec-
tive open circuit, measured from the end face of the inner conductor, in units of the annulus ra– rz, for the case ~ = co.
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Fig. 2. Coaxial line step capacitance, for the case of step on the outer conductor, in fF/cm. When multiplied
by the circumference of the inner conductor, the step capacitance is obtained in femtofarads.

TABLE I

COMPUTEDVALUES OF STEP CAPACITANCE IN fF/cm

When multiplied by the circumference of the unstepped conductor, these figures yield the value of step capacitance in femtofarads

c1

.—

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Plane Case

108.20
69.700
47.797
32.931
22.121
14.057
8.0688
3.7965
1.0784
0.0

1.5

108.56
70.024
48.083
33.171
22.311
14.196
8.1592
3.8436
1.0926
0.0

Step on Inner Open Circuit

3

110.31
71.663
49.562
34.452
23.363
14.999
8.7063
4.1462
1.1927
0.0

5

112.05
73.320
51.089
35.808
24.514
15.913
9.3604
4.5311
1.3303
0.00

10

114.56
75.736
53.349
37.859
26.302
17.387
10.469
5.2314
1.6095
0.0

co

134.89
95.659
72.607
56.171
43.358
32.832
23.869

16.009

8.8579
0.0

1.5

108.66
70.111
48.149
33.218
22.341
14.213

8.1665
3.8455
1.0927
0.0

Step on Outer

3

112.42
73.398
50.885
35.388
23.965
15.338

8.8597
4.1909
1.1952
0.0

5

118.82
78.814
55.265
38.774
26.445
17.025
9.8814
4.6926
1.3423
0.0

10

135.07
92.659
65.767
46.741
32.194
20.887
12.199
5.8217
1.6712
0.0
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ACCURACY OF RESULTS

There are three possible sources of error in the calculation

of the step capacitance. These are:

1) the limited number of digits representing a floating

point quantity in the computer;

2) the threshold values set in the program to terminate

iterative processes, etc.;

3) the extrapolation used in obtaining the final values of

step capacitances, i.e. using only a finite number of

higher order modes to predict the asymptotic values of

the step capacitances corresponding to an infinite num-

ber of modes, as required by the theory.

The computer employed had a word length of 48 bits,

resulting approximately in 12 decimal digits. The effect on

accuracy of a finite number of digits is most serious when dif-

ferences of similar quantities are taken, in which case sev-

eral significant digits are lost, despite the fact that the com-

puter still produces an answer containing 12 decimal digits.

In critical places in the program where this was likely to

happen double precision was used, and it is believed that

errors from this source do not contribute to the first five

digits of the results.

For the set threshold values of iterative processes the

check is more positive. It is always possible to change the

value of the threshold and observe the effect of this change

on the final answer. The value of the threshold should be

such that further reduction does not affect the result sig-

nificantly.

As mentioned before, the theory [2] requires an infinite

number of higher order modes of propagation to be taken

into account. This is not possible. In the original calcula-

tion by Whinnery, Jamieson, and Robbins, made before

automatic digital computers became available, only the first

four modes were taken into account. In the present calcula-

tion provision was made to use the first 140 modes, but it

was found that the required accuracy could be achieved by

using only 40 modes and extrapolating in the following way

to obtain an answer closely approaching that correspond-

ing to an infinite number of modes.

In analyzing one point (a= 0.5, ~= 3.0), results were

computed using the first 28, 29, . . .40 modes, It was found

that the computed step capacitances considered as a func-

tion of the numbers of modes used could be approximated

very well by an hyperbola of the form C= A/m+ B, where

A and B are constants. The coefficient of correlation between

m and C for the above-mentioned case was found to be

0.999992. Thus it is believed that the asymptotic value B
of the first order hyperbola fitted by the method of least

squares may be regarded as the solution within the limits of
accuracy given above.

As a further check, using the above procedure, for a

typical value of a = 0.5, a set of capacitances was calculated

for r= 1.5, 1.4, 1.3, 1.2, and 1.1. Extrapolating this set to

r= 1.0, which is that of the plane case for which an explicit

formula exists (given above), the residual error was found

to be in the order of 0.01 percent.

Any further increase in computational accuracy is hardly

warranted in most practical applications because of the

limited accuracy of the knowledge of the physical dimensions

the departure of the actual geometry from the theoretical

(perfectly smooth concentric circular cylinders having per-

fectly sharp corners), and conductor losses.

THE EFFECT OF FREQUENCY

As has been pointed out [1], [2], it is not possible to

present universally valid frequency correction factors X,2

which when multiplied by the step capacitance values for

zero frequency, yield the step capacitances at the desired

frequencies because each different case has a different fre-

quency correction factor. K is a function of a, T, and the

frequency, and also depends upon whether the step is on the

inner or the outer conductor.

However, to indicate generally the form and magnitude

of the frequency correction factor, K is given in Fig. 3.

For users wishing to obtain values of step capacitances

accurate to five digits at non-zero frequencies, the only

possible way seems to be to run the complete program on a

computer for the case in question. To those who are inter-

ested, the author would be pleased to send a copy of the

computer program listing written in CDC 3600 FORTRAN.

THE METHOD OF PROGRAMMING

The computations of ‘step on inner’ and ‘step on outer’

are very similar, therefore only the case of the ‘step on

inner’ is described. The equation numbers, unless stated

otherwise, refer to reference [2].

The program starts with the evaluation of quantities

derived from Bessel functions. For arguments <50 the

‘backward recurrence’ method is used to evaluate the Bessel

functions [6] and the roots of the transcendental equations

(7) and (8) are found by iteration. For arguments <50

McMahon’s method [7] is used to yield the roots. From the

desired number of roots, the quantities kA~, k~m, GA~, and

G~n of (5) and (6) and finally the values of Z of (3) are

obtained. The given frequency determines KA% and KBn of

(16).

The above quantities, and the Hahn functions (80), (81),

and (82) of reference [1], yield the quantities Lo, La, Mp of

(33), (34), and (35), and thus the elements of the matrix

equation (37) may be formulated. The solutions of the ma-

trix equation are used in (36) to work out the step capaci-

tance corresponding to the given number of higher order

2 In thk paper the symbol for the frequency correction factor was
chosen to be K in contrast with reference [2] where F was used, to avoid
confusion now that F has become the accepted symbol for Farads.
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Fig. 3. Frequency correction factor for coaxial line step capacitance vs. (r~ –r,)/h.
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modes. Next, the number of modes is increased by one, and

a different value of capacitance is obtained. Then the num-

ber of modes is increased again by one, and this is repeated

until the highest desired number of evanescent modes have

been used. Finally, a first order hyperbola is fitted by the

method of least squares, to the capacitances as functions of

number of modes used. The asymptotic value of this hyper-

bola is regarded as the final value of capacitance. It has been

found that using the first 28, 29, . ...40 modes yields a

sufficiently accurate asymptotic value for the ‘best fit’ hyper-

bola.

It should be noted that a few misprints were located in

reference [2] which had to be corrected before the method

could be used. In (37) and (45) the subscripts m and p should

be reversed to comply with the accepted order of subscripts

of matrix elements, where the first subscript stands for row

number and the second for column number. In (44), in the

denominator of the second term the quantity in brackets

should not be squared and the subscript of r should be 1

instead of 3. In the same equation and in (45) the arguments

of the L and M functions should not be @— a)/b as indi-

cated, but only a/b, once the appropriate definitions of a and

b have been set down for the condition ‘step on outer’—as

given in the text. Similarly, in the numerator of the first

term of (44), the quantity indicated as (b – a)’ should simply

be az. Finally, in the numerator of the last summation of

(32), (h~<~)’ should read (ICBZ,)3.

CONCLUSIONS

A long-standing need to obtain more accurate values of

coaxial line step capacitances has been satisfied, using the

approach suggested by Hahn in 1941, and applied in detail

by Whinnery, Jamieson, and Robbins in 1944, by program-

ming the above-mentioned method for a high speed digital

computer.
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